.HAPTER

Electric Fields in Matter

4.1 BPOLARIZATION

4.1.1 B Dielectrics

In this chapter. we shall study electric fields in matter. Matter, of course, comes
in many varieties—solids, liquids. gases, metals, woods, glasses—and these sub-
stances do not all respond in the same way to electrostatic fields. Nevertheless,
most everyday objects belong (at least. in good approximation) to one of two large
classes: conductors and insulators (or dielectrics). We have already talked about
conductors; these are substances that contain an “unlimited” supply of charges
that are free to move about through the material. In practice, what this ordinarily
means is that many of the electrons (one or two per atom, in a typical metal) are
not associated with any particular nucleus, but roam arcund at will. In dielectrics,
by contrast. all charges are attached to specific atoms or molecules—they’re on
a tight leash, and all they can do is move a bit within the atom or molecule. Such
microscopic displacements are not as dramatic as the wholesale rearrangement
of charge in a conductor, but their cumulative effects account for the charactenis-
tic behavior of dieleciric materials. There are actually rweo principal mechanisms
by which electric fields can distort the charge distribution of a dielectric atom
or molecule: stretching and rotating. In the next two sections I'll discuss these
processes.

4.1.2 B Induced Dipoles

What happens to a neutral atom when it is placed in an electric field E? Your
first guess might well be: “Absolutely nothing—since the atom is not charged, the
field has no effect on it.” But that is incorrect. Although the atom as a whole is
electrically neutral, there is a positively charged core (the nucleus) and a nega-
tively charged electron cloud surrounding it. These two regions of charge within
the atom are influenced by the field: the nucleus is pushed in the direction of the
field. and the electrons the opposite way. In principle, if the field is large enough,
it can pull the atom apart complelely, “ionizing™ it (the substance then becomes
a conductor). With less extreme fields, however, an equilibrium is soon estab-
lished, for if the center of the electron cloud does not coincide with the nucleus,
these positive and negative charges attract one another, and that holds the atom
together. The two opposing forces—E pulling the electrons and nucleus apart,
their mutual attraction drawing them back together——reach a balance, leaving the
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H He Li Be C Ne Na Ar K Cs
0.667 0205 243 560 167 039 241 164 434 594

TABLE 4.1  Atomic Polarizabilities {ar/4meg, in units of 107 m*). Data from: Hand-
book of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press, 2010).

atom polarized, with plus charge shifted slightly one way, and minus the other.
The atom now has a tiny dipole moment p, which points in the same direction
as E. Typically, this induced dipole moment is approximately proportional to the
field (as long as the latter is not too strong):

p=<«E. {4.1)
The constant of proportionality o is called atomic polarizability. 1ts value
depends on the detailed structure of the atom in question. Table 4.1 lists some
experimentally determined atomic polarizabilities.

Example 4.1. A primitive model for an atom consists of a point nucteus (+g)
surrounded by a uniformly charged spherical cloud (—g) of radius a (Fig. 4.1},
Calculate the atomic polarizability of such an atom.

FIGURE 4.1 FIGURE 4.2

Solution

In the presence of an external field E, the nucleus will be shifted slightly to the
right and the electron cloud to the left, as shown in Fig. 4.2. (Because the actual
displacements involved are extremely small, as you’ll see in Prob. 4.1, it is rea-
sonable to assume that the electron cloud retains its spherical shape.) Say that
equilibrium occurs when the nucleus is displaced a distance 4 from the center of
the sphere. At that point, the external field pushing the nucleus to the right exactly
balances the internal field pulling it to the left: E = E,, where E, is the field pro-
duced by the electron cloud. Now the field at a distance 4 from the center of a
uniformly charged sphere is

IS

E, =

L

1
4men a
(Prob. 2.12). At equilibrium, then,

! E or p=gd= (4;reoa3)E.

E= .
4neq a’
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The atomic polarizability is therefore
o = 4wegu’ = 3egu, (4.2)

where v is the volume of the atom. Although this atomic model is extremely crude,

the l'CSL!“ (Eq. 4.2) is not too bad—it’s accurate to within a factor of four or so for
many simple atoms.

For molecules the situation is not quite so simple, because frequently they
polarize more readily in some directions than in others. Carbon dioxide (Fig. 4.3),
for instance, has a polarizability of 4.5 x 10~% C%m/N when you apply the field
along the axis of the molecule, but only 2 x 10% for fields perpendicular to
this direction. When the field is at some angle to the axis, you must resolve it
into parallel and perpendicular components, and multiply each by the pertinent
polarizability:

p=a.E +oE.
In this case, the induced dipole moment may not even be in the same direction
as E. And CO; is relatively simple, as molecules go, since the atoms at least

arrange themselves in a straight line; for a completely asymmetrical molecule,
Eq. 4.1 is replaced by the most general linear relation between E and p:

Pr =0 Ec+ G’x,\'E.V + o E;
Py =y Ex +an By + 0y E; 43
p.=oE. + o E,ta E,

FIGURE 43

The set of nine constants o;; constitute the polarizability tensor for the molecule.
Their values depend on the orientation of the axes you use, though it is always
possible to choose “principal” axes such that all the off-diagonal terms (ay,, o.,.
etc.) vanish, leaving just three nonzero polarizabilities: a,., ey, and e

Problem 4.1 A hydrogen atom (with the Bohr radius of half an angstrom) is situated
between two metal plates 1 mm apart, which are connected to opposite terminals of
a 500 V battery. What fraction of the atomic radius does the separation distance d
amount to, roughly? Estimate the voltage you would need with this apparatus to
ionize the atom. [Use the value of & in Table 4.1. Moral: The displacements we’re
talking about are minute, even on an atomic scale.]
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mumnwwhmcw for 2 hydroge
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cloud, E, (r): then expand the exponential. ssuming r € o’

Problem According 0 4].““““’ of an aom B pro-
pottionllflheexmnll ﬁeEld.q‘ThishamdM'm a furslamental law,
and it is casy 1o concoct exceptions—in theory. Suppose, for cxampic the charge
density of the electron cloud were proportional 10 the destame fron: ‘o . enter, om
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Problem 4.4 A point charge ¢ is situsted a large distamce 7 from a cuiral atom of
polariubililya.Fmdlhefuwdmmm

— -

4.1.3 W Alignment of Polar Molecules

The neutral atom discussed in Sect. 4.1.2 had no dipole moment 1o «turt with—p
was induced by the applied field. Some molecules have buihi-in. perin....ont dipole
moments. In the water molecule, for example. the electrons tend to . ! icr around
the oxygen atom (Fig. 4.4), and since the molecule is bent ot 105 1his lcaves a
negative charge at the vertex and a net positive charge on the oppnitc wide. (The
dipole moment of water is unusually targe: 6.1 x 10 C-m; in fm s s whet
accounts for its effectiveness as a solvent.) What happens when . 1 mulecules
(called polar molecules) are placed in an electric fieid?

If the field is uniform, the force on the positive end. F, = gE. cv.. 'ty cancels
the force on the negative end, F. = ~qE (Fig. 4.3). However. thoic will be s
lorque:

N=(r, xF,)+(s_ xF.)

= [(d/2) x (gB)] + [(~4/2) x (~qE)| m ¢d -

y *
i "
©/q
LN
——
[ 3
FIGURE 4.4 FIGURE 4.8

I Py
Forlmsoplnwmh.nuwj.hhlhn“uhlm;
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Thus a dipole p = gd in a uniform field E experiences a torque

N=pxE. (4.4)

Notif:cthal N is in such a direction as to line p up parallel to E; a polar molecule
:.ilu'td is free 10 rotate will swing around until it points in the direction of the applied
eld.

If the field is nonuniform, so that F,, does not exactly balance F_, there will be
anet force on the dipole, in addition to the torque. Of course, E must change rather
abruptly for there to be significant variation in the space of one molecule, so this
is not ordinarily a major consideration in discussing the behavior of dielectrics.
Nevertheless, the formula for the force on a dipole in a nonuniform field is of
some interest:

F=F, +F_=g(E, - E_) = q(AE),

where AE represents the difference between the field at the plus end and the field
at the minus end. Assuming the dipole is very short, we may use Eq. 1.35 0
approximate the small change in E,:

AE, = (VE,) 4,
with corresponding formulas for £, and E,. More compactly,
AE =(d-V)E,
and therefore?

F=(p-VE. (4.5)

For a “perfect” dipole of infinitesimal length, Eq. 4.4 gives the torque abour
the center of the dipole even in a nonuniform field; about any orher point N =
(pxE)+(rxF).

Problem 4.5 In Fig. 4.6. p; and p; are (perfect) dipoles a distance r apant. What is
the 1orque on p; due to p2? What is the torque on p; due to p, ? |In each case, 1 want
the torque on the dipole about its own center. I it bothers you that the answers are

not equal and opposite, see Prob. 4.29.]
o
»
bt *
------------ g
P P,
FIGURE 46 FIGURE 47

Yin the present context, Eq. 4.5 could be written more conveniently a3 F = V(p - E). However, it is
safer 10 stick with (p - V)E. becanse we will be applying the formula to materials in which the dipole
mcwmmww-mdmmwwmmmﬂ
[imcoerectly) that p soo is to be differentiated.
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Problem dipole p is situsted & distance 2 shove an infinute
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muwmuwwdmmmmmﬂﬁ_
placement ris
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Um—=lp-m =300 -b bl “wn
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[Hint: Use Prob. 4.7 and Eq. 3.104.)

Pmblall.’Adipolopiquﬁunlpth.ﬂmcmcd 0 thet
p makes an angle & with the vector  from ¢ 10 p.

{(a) What is the foece on p?
(b) What is the force on ¢?

4.1.4 B Polarization

In the previous two sections, we have considered the effect of an cxicrnal elec-
tric field on an individual atom or molecule. We are now in a position to answes
(qualitatively) the original question: What happens (o a piece of dielevt::  material
when it is placed in an electric field? If the substance consists of neutr.. atoms (o
nonpolar molecules), the field will induce in each a tiny dipole momc:n. pointing
in the same direction as the field.’ If the material is made up of polas molecules,
each permanent dipole will experience a torque, tending 10 line it un along the
field direction. (Random thermal motions compete with this process. « the align-
ment is never complete, especially at higher iemperatures, and dixapyv v~ almost
at once when the field is removed.)

Notice that these two mechanisms produce the same basic result « - of lintle
dipoles pointing along the direction of the fieid—the material become - olarized.
A convenient measure of this effect is

P = dipole moment per unit volume,

whichiscallec.iﬂlfpohrm.ﬁommonndnlluum much aboul
howmepolnnnnongorume.Acnnlly.lh:mmL‘ldcxnmdll
not as clear-cut as | tried to pretend. Even in polar molecules there will be

*1n asymmetric molecules, the induced dipole moment |
_ may not be paraliel 1o the ki, bt if O
m“'mmhmmﬂmhm' Within 8 singhe
crystal, the orientations are certainly aor Tandom. aad we wowkd have o treat thes e wenarately.
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some polarization by displacement (though generally it is a lot easicr to rotate a
ml?‘“k than to stretch it, so the second mechanism dominates). It's even possi-
Ple In some materials to “freeze in™ polarization, so that it persists after the field
is removed. But let's forget for 8 moment about the cause of the polarization, and
let’s study the field that a chunk of polarized material itself produces. Then, in
Sect. 4.3, we'll put it all together: the original field, which was responsibie for P,
plus the new field, which is due to P,

4.2 @ THE FIELD OF A POLARIZED OBJECT

4.2.1 B 8ound Charges

Suppose we have a piece of polarized material—that is, an object containing a
lot of microscopic dipoles lined up. The dipole moment per unit volume P is
given. Question: What is the field produced by this object (not the field that may
have caused the polarization, but the field the polarization ifself causes)? Wel,
we know what the field of an individual dipole looks like, so why not chop the
material up into infinitesimal dipoles and integrate to get the total? As usual, it’s
easier 1o work with the potential. For a single dipole p (Eq. 3.99),

1 p-4
Vi) = — -,

n dmeg 42
where 4 is the vector from the dipole to the point at which we are evaluating the
potential (Fig. 4.8). In the present context, we have a dipole moment p = Pdt’ in
each volume element dt’, so the total potential is

1 P(r)-4
vin = 41’!0 4 32

That does it, in principle. But a little sleight-of-hand casts this integral into a
much more illuminating form. Observing that

(4.8)

dr'. 4.9
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where (unlike Prob. l.l3)the¢ﬁﬂuulidolhwihlupeubmemn.“m

nates (), we have
1 YA .
= ] P v( )dt.
v 4x¢o 4

Integraﬁngbypat&.usingpmdlﬁmbmﬂﬁﬁlinlheﬁwmi. gives

y=_L.[jv'.(!)dt'-jl(V'-ﬂdt'].
reo ’ 4 .

v
1 1 . l | o .
V=-—f-p-a--—- —(V'.Pdr’, (4.10)
llov 4

The first term looks like the potential of a surface charge

aaP.i 4.1

(where i is the normal unit vector), while the second tesm looks like ¢ potential
of a volume charge

nm-Y.P (4.12)

With these definitions, Eq. 4.10 becomes

Vi) = —'- 2 ]"‘ (4.13)
4Jr

Whauhismnsiuhald:epol:uhl(lﬂibmelhoﬂnﬂeldhu - polarized
object is the same as that produced by a volume charge demsity o, -V - P phus
a surface charge density o, = P- i. Instead of incgrating the contrir *.ons of all
the infinitesimal dipoles, as in Eq. 4.9, we could first find those bour.i charges.
and then calculate the fields shey produce, in the same way we cak .- - the field
of any other volume and surface charges (for example, using Gauss '« ..+ ).

]

Example 4.2. Find the electric field produced by a uniformly poi.r: cd sphere
of radius R.

Solution

We may as well choose the z axis 10 coincide with the direction of mlarization
(Fig. 4.9). Thevolmbamdchnedmtyp.umml’uumtmb\l

alP-B= Pcosd.
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FIGURE 49

where 8 is the usual spherical coordinate. What we want, then, is the field pro-
duced by a charge density P cos 8 plastered over the surface of a sphere. But we
already computed the potential of such a configuration, in Ex. 3.9:

-3%»-0058. for r <R,
Vir.8) =
-3%%,3 cosé, for r>R.
Since r cos 8 = Z, the field inside the sphere is uniform:
E--VV=--£—§=—LP. for r<R. (4.14)
3eo 3eo

This remarkable result will be very useful in what follows. Outside the sphere the
potential is identical to that of a perfect dipole at the onigin,

V= aweg 2

for r>R. (4.15)

FIGURE 410
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whosedipolcmommis,nusrprisins'v-ﬂ“”““‘"d@" moment of the

sphere:
p= ;-:'R’ P. 14.16)

Theﬁeldoftheunifomﬂypohﬁmdqilutiuhoﬂlinﬁg,d.lo.

Pmbleud.lOAsptueofndimlcmieupdﬁmim
'(r)-h’-

wberekisaconsuntmdrislhevmﬁnlllhm.
(a)Calculllethehmmdchnlumadp..
() Findtheﬁeldinside.dauidndlqhe.

hobhn‘.llAshoﬂcyﬁmbr.dn&-audm L.carrees a 1o ien-in” ung-
fmmpolaﬁmion?.puﬂklmiuuh.ﬁdhwm.w\.-c.hmedu.
tricﬁeld(i)fwl.)a.(ii)lorl.(a.nd(lii)hrl.'ua.l'nmnh vnoas a bee
eleciret: it is the electrical analog 10 & bar magnet. In practice, vniy -cry special
mauﬁﬂs—hﬁumﬁmhdnm'fww—mll hov' - permanest
ehcnicpdaﬁznﬁon.ﬂuu'swhyyoum'twym.mM Mo

Problem 4.12 Cakulaie the potential of a uniformly polansed spovc (Ex. 4.2)
directly from Eq. 4.9.

4.2.2 W Physical Interpretation of Bound Charges

In the last section we found that the fAield of & polasized object 1+ iicntical to
the field that would be produced by a certain distribution of “boum! . harges,” 0,
and p,. But this conclusion emerged in the course of abstract mani;  Litions 08
theimegnlinEq.d.‘).andleﬁmwilhnoclueulothcphyakalrnr.u-~-1,.:nf|hes
bound charges. Indeed, some authors give you the impresaion that bl charges
are in some sense “fictitious™—mere bookkeeping devices used 1o * . litale the
calculation of fields. Ndhin’ could be further from the truth: P oand 2y rEpIe
sent perfectly genuine accumulations of charge. In this section I'll -+plam how
polarization leads to these charge distributions.

The basic idea is very simple: Suppose we have a long string «* 1poles, a8
shown in Fig. 4.11. Along the line, the head of one effectively can <@ the tail of
its neighbor, but a1 the ends there are two charges left over: plus at '+ night end
and minus at the lefi. 1t is as if we had peeled off an electron st one cn.! . carried
it all the way down 10 the other end, though in fact no single clevtr made the
whole trip—a lot of tiny displacements add up 10 one large one. W .l the net
charge at the ends a bound charge to remind ourselves that it canmt .~ removed;

—0-;-‘-._._:

p— it

FIGURE 411
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FIGURE 4.12 FIGURE 4.13

in a diclectric every clectron is attached to a specific atom or molecule. But apant
from that, bound charge is no different from any other kind.

To calculate the actual amount of bound charge resulting from a given polar-
uation. examine a “tube™ of dielectric parallel to P. The dipole moment of the
tiny chunk shown in Fig. 4.12 is P(Ad). where A is the cross-sectional area of
the tube and d is the length of the chunk. In terms of the charge (g} at the end,
this same dipole moment can be written ¢d. The bound charge that piles up at the
right end of the tube is therefore

g = PA.
If the ends have been sliced off perpendicularly, the surface charge density is
Oy = ':— = P.
For an oblique cut (Fig. 4.13). the charge is still the same, but A = Ay 058, 50
O = g =Pcosf=P-0.
Acnd

The effect of the polarization, then, is to paint a bound charge o, = P - ii over the
surface of the material. This is exactly what we found by more rigorous means in
Sect. 4.2.1. But now we know where the bound charge comes from.

If the polarization is nonuniform, we get accumulations of bound charge wirhin

the material, as well as on the surface. A glance at Fig. 4.14 suggests that a diverg-
ing P results in a pileup of negative charge. Indeed. the net bound charge [ py dv

&2
FIGURE 4.14
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in a given volume is equal and opposite to the amount that has been pusheq out
through the surface. The latter (by the same reasoning we used before) is P . j per

unit area, so
fpbdr=—fP-da=-—j(V-l’)dr.
S v

v
Since this is true for any volume, we have
pp=-V-P

confirming, again, the more rigorous conclusion of Sect. 4.2.1.

Example 4.3. There is another way of analyzing the uniformly polar: -J sphere
(Ex. 4.2), which nicely illustrates the idea of a bound charge. Wh . we have,
really, is two spheres of charge: a positive sphere and a negative splere. With.
out polarization the two are superimposed and cancel completely. Bu' when the
material is uniformly polarized, all the plus charges move slightly . urd (the
z direction), and ail the minus charges move slightly downward (Fiz ! 15). The
two spheres no longer overlap perfectly: at the top there's a “cap” of 11", wwer pos-
itive charge and at the bottom a cap of negative charge. This “leftove <harge is
precisely the bound surface charge o,.

FIGURE 4.15

'In Prob. 2.18, you calculated the field in the region of overlap be .cen two
uniformly charged spheres; the answer was

! qd

E=z-——_1"

41760 RY

where g is the total charge of the positive sphere, d is the vector from th. negative
center to the positive center, and R is the radius of the sphere. We can «  press this
1n terms of the polarization of the sphere, p = qd = (37 RYP, as |

!
E=-_p
3€nP
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Meanwhile, for points ourside, it is as though all the charge on each sphere were
concentrated at the respective center. We have, then, a dipole, with potential

1 p-r

(Remember that d is some small fraction of an atomic radius; Fig. 4.15 is grossly
exaggerated.) These answers agree, of course, with the results of Ex. 4.2,

Prubleu.l 4.13 A very long cylinder, of radius a, carries a uniform polarization P
perpendicular to its axis. Find the electric field inside the cylinder. Show that the
field ourside the cylinder can be expressed in the form

4

E(r)=

260 [2(P-8)s—P).

[Careful: | said “uniform.” not “radial™!)
Problem 4.14 When you polarize a neutra! dielectric, the charge moves a bit, but

the roraf remains zero. This fact shouid be reflected in the bound charges o, and p,.
Prove from Eqgs. 4.11 and 4.12 that the total bound charge vanishes.

4.2.3 M The Field Inside a Dielectric®

1 have been sloppy about the distinction between “pure” dipoles and “physical”
dipoles. In developing the theory of bound charges, I assumed we were working
with the pure kind—indeed, I started with Eq. 4.8, the formula for the potential
of a perfect dipole. And yet, an actual polarized dielectric consists of physical
dipoles, albeit extremely tiny ones. What is more, I presumed to represent dis-
crete molecular dipoles by a continuous density function P, How can 1 justify
this method? Qutside the dielectric there is no real problem: here we are far away
from the molecules (s is many times greater than the separation distance between
plus and minus charges), so the dipole potential dominates overwhelmingly and
the detailed “graininess™ of the source is blurred by distance. Inside the dielectric,
however, we can hardly pretend to be far from all the dipoles, and the procedure I
used in Sect. 4.2.1 is open to serious challenge.

In fact, when you stop to think about it, the electric field inside matter must
be fantastically complicated, on the microscopic level. If you happen to be very
near an electron, the field is gigantic, whereas a short distance away it may be
small or may point in a totally different direction. Moreover, an instant later, as
the atoms move about, the field will have altered entirely. This true microscopic
field would be utterly impossible to calculate, nor would it be of much interest
if you could. Just as, for macroscopic purposes, we regard water as a continu-
ous fluid, ignoring its molecular structure, so also we can ignore the microscopic

“This sectiont can be skipped without loss of continuity.
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bumps and wrinkles in the electric ficld inside matter, and concentrate on the
macroscopic field. This is defined as the average ﬁe‘ld ovcr.regnor.as large Fnough
to contain many thousands of atoms (so that the uninteresting microscopic Aye.
tuations are smoothed over), and yet small enough to ensure u?at we _du not wash
out any significant large-scale variations in the ﬁe!d. (ln_prxncc. 'hl\vmcafns we
must average over regions much smaller than the dimensions of the object itself.)
Ordinarily, the macroscopic field is what people mean when they speak of “the”
field inside matter.?

It remains to show that the macroscopic field is what we actually virain whep
we use the methods of Sect. 4.2.1. The argument is subtle, so har» on. Sup-
pose I want to calculate the macroscopic field at some point £ within .. dielectric
(Fig. 4.16). I know I must average the true {microscopic) field over an appropriate
volume, so let me draw a small sphere about r, of radius, say, a thow.and times
the size of a molecule. The macroscopic field at r, then, consists of tw: parts: the
average field over the sphere due to all charges outside, plus the average due to all

charges inside:
E= Eoul + Ein-

You proved in Prob. 3.47(d) that the average field (over a sphere). pooduced by
charges outside, is equal to the field they produce at the center. so E,... 1~ the field
at r due to the dipoles exterior to the sphere. These are far enough av..v that we
can safely use Eq. 4.9:

1 Pr)-§
Vou = —_ . .
A 4”&) 22 dr 4 7
outside

The dipoles inside the sphere are too close to treat in this fashion. But " rtunately
all we need is their average field, and that, according to Eq. 3.108, i«

regardless of the details of the charge distribution within the sphery. The only
relevant quantity is the total dipole moment, p=(3TRY)P:

En= —i—r. (4.18)

FIGURE 4.16

5 . .
In case the notion of macroscopic fields sounds SUSPicious 1o you. let me point out that +ou do exacily
the same averaging whenever you speak of the densiry of 3 material. 7
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' Now, by assumption, the sphere is small enough that P does not vary signif-
icantly over its volume, so the term left out of the integral in Eq. 4.17 corre-
sponds to the field at the center of a uniformly polarized sphere, to wit: —(1/3€y)P
(Eq. 4.14). But this is precisely what Ei, (Eq. 4.18) puts back in! The macroscopic
field, then, is given by the potential

| [P(E)-4
Vir) = ’
(M= f —dt, (4.19)

where the integral runs over the entire volume of the dielectric. This is, of course,
what we used in Sect. 4.2.1; without realizing it, we were correctly calculating
the averaged, macroscopic field, for points inside the dielectric.

You may have to reread the last couple of paragraphs for the argument to sink
in. Notice that it all revolves around the curious fact that the average field over
any sphere (due to the charge inside) is the same as the field at the center of a
uniformly polarized sphere with the same total dipole moment. This means that no
matter how crazy the actual microscopic charge configuration, we can replace it
by a nice smooth distribution of perfect dipoles, if all we want is the macroscopic
(average) field. Incidentally, while the argument ostensibly relies on the spherical
shape | chose to average over, the macroscopic field is certainly independent of
the geometry of the averaging region, and this is reflected in the final answer,
Eq. 4.19. Presumably one could reproduce the same argument for a cube or an
ellipsoid or whatever—the calculation might be more difficult, but the conclusion
would be the same.

4.3 W THE ELECTRIC DISPLACEMENT

4.3.1 M Gauss’s Law in the Presence of Dielectrics

In Sect. 4.2 we found that the effect of polarization is to produce accumulations of
(bound) charge, p, = —V - P within the dielectric and o, = P - 1i on the surface.
The field due to polarization of the medium is just the field of this bound charge.
We are now ready to put it all together: the field attributable to bound charge plus
the field due to everything else (which, for want of a better term, we call free
charge. p;). The free charge might consist of electrons on a conductor or ions
embedded in the dielectric material or whatever; any charge, in other words, that
is not a result of polarization. Within the dielectric, the total charge density can

be written:
p=pp+ Py, (4.20)
and Gauss's law reads
«V -E=p=p+p;=-V -P+py,

where E is now the foral field, not just that portion generated by polarization.
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It is convenient 1o combine the two divergence terms:

V. (eE+P)y=pr.

The expression in parentheses. designated by the letter D,

D=E+P 421

is known as the electric displacement. In terms of D, Gauss’™s law teawds

V-D=p,. 4.22)

or, in integral form,

%D da= Q. (4.23)
where @, denotes the total free charge enclosed in the volume. b 1x a par-
ticularly useful way to express Gauss's law, in the context of diclectin. - because
it makes reference onlv to free charges, and free charge is the sult control.

Bound charge comes along for the ride: when we put the free chare in place,
a certain polarization automatically ensues, by the mechanisms of Seo 4.1, and
this polarization produces the bound charge. In a typical problem, U - -lore, we
know p, but we do not (initially) know py; Eq. 4.23 lets us goright 1o vork with
the information at hand. In particular, whenever the requisite symniet s -~ present,
we can immediately calculate D by the standard Gauss’s law methonds

Example 4.4. A long straight wire, camying uniform line charge 4.1~ rrounded
by rubber insulation out to a radius « (Fig. 4.17). Find the electric Ji ;o ccment.

Gaussian surface

FIGURE 4.17

Solution

ED;aT;Bg :v ny;inn:rical Gaussian surface. of radius s and length /.. and applying

D(2nsl)y=aL.
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Therefore,

= —S&. (4.24)

Notice that this formula holds both within the insulation and outside it. In the
latter region, P = (, so0

s, fors > a.

Inside the rubber, the electric field cannot be determined, since we do not know P.

It may appear to you that I left out the surface bound charge o, in deriving
Eq. 4.22, and in a sense that is true. We cannot apply Gauss’s law precisely at the
surface of a dielectric, for here p, blows up,® taking the divergence of E with it.
But everywhere else the logic is sound, and in fact if we picture the edge of the
dielectric as having some finite thickness, within which the polarization tapers
off to zero (probably a more realistic model than an abrupt cut-off anyway), then
there is no surface bound charge; p,, varies rapidly but smoothly within this “skin,”
and Gauss's law can be safely applied everywhere. At any rate, the integral form
(Eq. 4.23) is free from this “defect.”

Problem 4.15 A thick spherical shell (inner radius @, outer radius b) is made of
dietectric material with a “frozen-in” polarization

P(r) = E r,
r

where k is a constant and r is the distance from the center (Fig. 4.18). (There is
no free charge in the problem.) Find the electric field in all three regions by two
different methods:

{a) Sphere (b) Needle  (c) Wafer

FIGURE 4.18 FIGURE 4.19

The polarization drops abruptly to zero outside the material, so its derivative is a delta function (sec
Prob. 1.46). The surface bound charge is precisely this term—in this sense it is actually included in
s but we ordinarily prefer to handle it separately as ap.
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(a) Locate all the bound charge. and use Gauss’s law (Eq- 2.13) 1o caleulate the

field it produces.

D, and then get E from Eq. 4.21. [Notice that the second

. 423 10 find
(®) Use 4 and it avoids any explicit reference to the bound charges,|

method is much faster,

Problem 4.16 Suppose the field inside a large piece of dielectric is Eq. «o that the

electric displacement is Do = €oEo + P.

(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of |I?c matenial. Find
the field at the center of the cavity in terms of Ey and P. Also find the displace-
ment at the center of the cavity in terms of Dy and P. Assume the polarization
is “frozen in.” so it doesn’t change when the cavity is excavated.

(b) Do the same for a long needle-shaped cavity running parallel t P (112 4.19b).
{c) Do the same for a thin wafer-shaped cavity perpendicular to P (Fiy 4 [9¢).

Assume the cavities are small enough that P, Eq, and Dy are essentratls uniform,
[Hin1: Carving out a cavity is the same as superimposing an object . the same
shape but opposite polarization.]

4.3.2 B A Deceptive Parallel

Equation 4.22 looks just like Gauss's law, only the tofal charge density p is
replaced by the free charge density p,, and I is substituted for ¢,k For this
reason, you may be tempted to conclude that D is “just like™ E (apar: trom the
factor &), except that its source is p; instead of p: “To solve problem mvolving
dielectrics, you just forget all about the bound charge—calculate the ticid as you
ordinarily would, only call the answer D instead of E.”” This reasoning 1+ seduc-
tive, but the conclusion is false; in particular, there is no “Coulomb’s lov. ™" for D:

1 [ 4
D(r) # a];ﬂ;(r’)dt'.

The parallel between E and D is more subtle than that.

For the divergence alone is insufficient to determine a vector field: v..u need to
know the curl as well. One tends to forget this in the case of electrost:ng fields
because the curl of E is always zero. But the curl of D is not always 7ot

VxD=¢6(VxE)+(VxP)=V xP. (4.25)

and there is no reason, in general, to suppose that the curl of P vani~hc-. Some-
times it does, as in Ex. 4.4 and Prob. 4.15, but more often it docs not. The
bar electret of Prob. 4.11 is a case in point: here there is no free charge any-
where, so if you really believe that the only source of D is p,. vou will be
forced to conclude that I = 0 everywhere, and hence that E = (1 ;'w‘l’ inside
and E = 0 outside the electret, which is obviously wrong. (1 leave it ror you to
find the place where V x P # 0 in this problem.) Because V x D = . more-

;werl.) D cannot be expressed as the gradient of a scalar—there is no “potential”
or 1r.
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Advice: When you are asked to compute the electric displacement, first look for
symmetry. If the problem exhibits spherical, cylindrical, or plane symmetry, then
you can get D directly from Eq. 4.23 by the usual Gauss’s law methods. (Evidently
in such cases V x P is automatically zero, but since symmetry alone dictates the
answer, you're not really obliged to worry about the curl.) If the requisite sym-
metry is absent, you'll have to think of another approach, and, in particular, you
must not assume that D is determined exclusively by the free charge.

4.3.3 H Boundary Conditions

The electrostatic boundary conditions of Sect. 2.3.5 can be recast in terms of D.
Equation 4.23 tells us the discontinuity in the component perpendicular to an
interface:

Do — Db = 07, (4.26)
while Eq. 4.25 gives the discontinuity in parallel components:
D:hove - DL'CM’ = szovc - PL!O“ (4.27)

In the presence of dielectrics, these are sometimes more useful than the corre-
sponding boundary conditions on E (Egs. 2.31 and 2.32):

|
E:-buve - El:'clow = G—o.a‘ (4.28)

and

E\.. —El..=0. (4.29)
You might try applying them, for example, to Probs. 4.16 and 4.17.

Problem 4.17 For the bar ¢lectret of Prob. 4.11, make three careful skeiches: one
of P, one of E, and one of D. Assume L is about 2a4. [Hint: E lines terminate on
charges: D lines terminate on free charges.|

4.4 BLINEAR DIELECTRICS

4.4.1 B Susceptibility, Permittivity, Dielectric Constant

In Sects. 4.2 and 4.3 we did not commit ourselves as to the cause of P, we dealt
only with the effects of polarization. From the qualitative discussion of Sect. 4.1,
though. we know that the polarization of a dielectric ordinarily results from an
electric field. which lines up the atomic or molecular dipoles. For many sub-
stances, in fact, the polarization is proportional to the field, provided E is not

too strong:
P= on,E. (430)
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is called the electric susceptibility of the
medium (a factor of €o has been extracted to make X. dimc'nsionlefs). The value of
x. depends on the microscopic structure of the substance in question (and also op
external conditions such as temperature). [ shall call materials that obey Eq. 4.30
- - -m-'] . -
hneI:;(:l :}E::tct];:-l in Eq. 4.30 is the rotal field; it may be due in part to ln_:c .Charges
and in part to the polarization itself. If, for instance, we put a piece of dielectric
into an external ficld Eq, we cannot compute P directly fl:om Eq. 4.39: the external
field will polarize the material, and this polarization will p‘roduce its own field,
which then contributes to the total field, and this in turn modifies the polarization,
which . .. Breaking out of this infinite regress is not alw?ys easy. Yug‘li €€ Some
examples in 2 moment. The simplest approach is to begin with the di \{vhn-emem,
at least in those cases where D can be deduced directly from the free charge
distribution.
In linear media we have

The constant of proportionality, Xe.

D = ¢E + P = &E + eox.E = el + x)E, 430
so D is also proportional to E:
D =¢E, (4,32
where
e = el + x). (4.33)

This new constant ¢ is called the permittivity of the material. {In vacu n, where
there is no matter to polarize, the susceptibility is zero, and the permitiinity is €.
That's why ¢ is called the permittivity of free space. 1 dislike the -, for it
suggests that the vacuum is just a special kind of linear dielectric, in . hich the
permittivity happens to have the value 8.85 x 107" C2/N.m*) If you iemove a
factor of €, the remaining dimensionless quantity

€
&=l4x =— (4.34)
€0

is called the relative permittivity, or dielectric constant, of the matc1i.l. Dielec-
tric constants for some common substances are listed in Table 4.2. (Notie that &
is greater than 1, for all ordinary materials.) Of course, the permittis :ty and the
dielectric constant do not convey any information that was not alrcad: . ailable
in the susceptibility, nor is there anything essentially new in Eq. 4.32. the physics
of linear dielectrics is all contained in Eq. 4.303

"In modem optical applications, especially. nonlinear materials have become increasmyis importanl
For these there is a second term in the formula for P as a function of E—typically a cubre term. In gen-
:ml- Eq. 4.30 can be regarded as the first {nonzero) term in the Taylor expansion of P 1n juwers of E.

As long as we are engaged in this orgy of unnecessary terminology and notation. 1 ught as well

mention that formulas for D in terms of E (Eq. 432 i ielec alled
constitutive relations. Eq. 4.32, in the case of linear dielectnos) are ¢
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Dielectric Dielectric
Material Constant  Material Constant
Vac_uum 1 Benzene 2.28
Helium 1.000065 Diamond 5.7-59
Neon 1.00013 Salt 5.9
Hydrogen (H;) 1.000254  Silicon 11.7
Argon 1.000517  Methanol 330
Air (dry) 1.000536  Water 80.1
Nitrogen (N;) 1.000548  Ice (-30° C) 104

Water vapor (100°C) 100589  KTaNbO; (0° C) 34,000

TABLE 4.2  Diclectric Constants (unless otherwise specified, values given are for 1 atm,
2Ar C). Data from Handbook of Chemistry and Physics, 915t ed. (Boca Raton: CRC Press,
2010).

Example 4.5. A metal sphere of radius a carries a charge Q (Fig. 4.20). It is
surrounded, out to radius b, by linear dielectric material of permittivity €. Find
the potential at the center (relative to infinity).

Solution

To compute V, we need to know E: to find E, we might first try to locate the
bound charge; we could get the bound charge from P, but we can’t calculate P
unless we already know E (Eq. 4.30). We secem to be in a bind. What we do know
is the free charge @, and fortunately the arrangement is spherically symmetric, so
let's begin by calculating D, using Eq. 4.23:

D= %f'. for all points r > a.

(Inside the metal sphere, of course, E =P = D = 0.) Once we know D, it is a
trivial matter to obtain E, using Eq. 4.32:

41rQer2 r, fora<r<b,
E= 0
=, for r > b.
dmwegr-

FIGURE 4.20
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The potential at the center is therefore

o 0
wan=- [ ()~ [ (e )~
= - dr - dr— | (O)dr
=_'L,E'dl— L(@rey’) "= ), \aner? A

_e(r 1. L)

T an (eob + ea ¢€b

As it turns out, it was not necessary for us to compute the polanzation or the

bound charge explicitly, though this can casily be done:

€0 )Xe Q -
= = r.
P =cxE 4mer?
in the dielectric, and hence
p=-V-P=0,
while
M. at the outer surface,
R 4meb?
op=P-n=
—6oxQ . at the inner surface.
4real

Notice that the surface bound charge at a is negative (i points vnrsard with
respect to the dielectric, which is +& at b but —F at a). This is notaral, since
the charge on the metal sphere atiracts its opposite in all the dielectnic imolecules.
It is this layer of negative charge that reduces the field, within the dic! - tric, from
1/4m60(Q/r2)F to 1 /4ne(Q/r?)F. In this respect, a dielectric is rarer like an
imperfect conductor: on a conducting shell the induced surface char; - would be
such as to cancel the field of Q completely in the region a < r < b: 1h* dielectric
does the best it can, but the cancellation is only partial.

You might suppose that linear dielectrics escape the defect in :he paralle]
between E and D. Since P and D are now proportional to E, does 1t not fol-
low that their curls, like E's, must vanish? Unfortunately, it does noz. tor the line
integral of P around a closed path that straddles the boundary betwecn e tvpe of
material and another need not be zero, even though the integral of E. .round the
same loop must be. The reason is that the proportionality factor ¢, x, i~ different
on the two sides. For instance, at the interface between a polarized diclectric and
the vacuum (Fig. 4.21), P is zero on one side but not on the other. Around this

P={

Vacuum
Dielectric

Pno
FIGURE 4.21
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loop § P- 4l %0, and hence, by Stokes’ theorem, the curl of P cannot vanish
everywhere within the loop (in fact, it is infinite at the boundary).’

Of course, if the space is entirely filled with a homogeneous'® linear dielectric.
then this objection is void; in this rather special circumstance

V-D=p; and VxD=0,
50 D can be found from the free charge just as though the dielectric were not there:

D = ¢oE.x.

where E,, is the field the same free charge distribution would produce in the
absence of any dielectric. According to Egs. 4.32 and 4.34, therefore,

E= lD = -I—Em. (4.35)
€ €
Conclusion: When all space is filled with a homogeneous linear dielectric, the
field everywhere is simply reduced by a factor of one over the dielectric constant.
(Actually, it is not necessary for the dielectric to fill alf space: in regions where
the field is zero anyway, it can hardly matter whether the dielectric is present or
not, since there's no polarization in any event.)

For example, if a free charge g is embedded in a large dielectric, the field it
produces is

1 g,
E=—= 4.36
dmer? (4.30)
(that's €, not €p), and the force it exerts on nearby charges is reduced accord-
ingly. But it’s not that there is anything wrong with Coulomb’s law; rather, the
polarization of the medium partially “shields™ the charge, by surrounding it with
bound charge of the opposite sign (Fig. 4.22)."!

+
B
+

FIGURE 422

*Punting that argument in differential form, Eq. 4.30 and product rule 7 yicld ¥V x P=—-¢FE x (Vyx,).

so the problem arises when V x, is not parallcl 0 E.

104 homogeneous medium is one whose properties (in this case the susceptibility) do not vary with
ition.

E)‘“lsn guantum electrodynamics, the vacuum itself can be polarized. and this means that the effective

(or “renormalized™) charge of the electron, as you might measure it in the laboratory, is not its true

(“bare™) value. and in fact depends slightly on how far away you are!
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e capacitor (Fig. 4.23) 1s filled with insulating

6. A parallel-plat ) .
Example 4.6 p P _What effect does this have on its capacitance?

material of dielectric constant €

Solution
Since the field is confined 10 the

reduce E, and hence also the potenti
the capacitance C = Q/V is increased by

C=¢ CVK- ‘4-37)

space between the plates, the diclectric will
al difference V. by a factor 1/¢,. Accordingly,
a factor of the dielectric constant,

This is, in fact, a common way 1o beef up a capacitor.

-— Diclectric

FIGURE 4.2}

[N

A crystal is generally easier 1o polarize in some directions than incters ' and

in this case Eq. 4.30 is replaced by the general linear relation

P, = eplxe,, E .+ Xeow E,+ Xe.. E:)
P, =c€o()e,  Ex + Xe. . Ex + X, ED) }. (4.38)
P.= fO(Xf;.Et + Xe. E .+ Xr:_.E:)

just as Eq. 4.1 was superseded by Eq. 4.3 for asymmetrical molecul- - The nine
coefficients, X, Xe.,- - - - » cOnSlitute the susceptibility tensor.

B —_—
Problem 4.18 The space between the plates of a parallel-plate capacii - Fig. 4.24)
is filled with two slabs of linear dielectric material. Each slab has th. " ness .50
the total distance between the plates is 2a. Slab 1 has a dielectric consi : i of 2, and

slab 2 has a dielectric constant of |.5. The free charge density on the 1 plate is &
and on the bottom plate —o.

2A medium is said 10 be isotropic if is properties (such as susceptibility) arc (t ~ame in al
directions. Thus Eq. 4.30 is the special case of Eq. 4.38 that holds for 1sotropic metha P sicists tend
‘t? be slw with their language, and unless otherwise indicated the term “lincar dicic. rw™ implies
isotropic linear dielectric.” and suggests “homogeneous isotropic lincar dielectric ™ Bt technically.
linear . Just means that at any given point, and for E in a given direction, the compoionis of P are
proporticnal to E—the propertionality factor coutd vary with position and/or directon
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+0

-4+— Slab 1

-4— Slab |

-4— —C

FIGURE 4.24

(a} Find the electric displacement D in each slab.

(b) Find the clectric field E in each slab.

(¢c) Find the polarization P in each slab.

(d) Find the potential difference between the plates.
{e) Find the location and amount of all bound charge.

() Now that you know all the charge (free and bound), recalculate the field in each
slab, and confirm your answer to (b).

Problem 4.19 Suppose you have enough linear dielectric material, of dielectric
constant ¢,, to half-fill a parallel-plate capacitor (Fig. 4.25). By what fraction is
the capacitance increased when you distribute the material as in Fig. 4.25(a)? How
about Fig. 4.25(b)? For a given potential difference V between the plates, find E,
D. and P, in each region, and the free and bound charge on all surfaces, for both
cases.

Problem 4.20 A sphere of linear dielectric material has embedded in it a uniform
free charge density p. Find the potential at the center of the sphere (relative to
infinity), if its radius is R and the dielectric constant is €,.

(a) {b)
FIGURE 4.25
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. . . f a copper wire, radius a, syr.
Problem 4.21 A certain coaxial cable consnst:r- o .
rounded by a concentric copper tube of inner radius t'_( Fig. 4_.26). The space between
is partially filled (from & out to ¢) with material of dielectric constant ¢, as shown,

Find the capacitance per unit length of this cable.

FIGURE 426

4.4.2 8 Boundary Value Problems with Linear Dielectrics

In a (homogeneous isotropic) linear dielectric. the bound charge den.y () is
proportional to the free charge density (/)"

Xe _ _ Xe
pb_-V.P——V-(EQGD)— (l+x')p,. 4.39)

In particular, unless free charge is actually embedded in the material. - = 0, and
any net charge must reside at the surface. Within such a dielectnic. then, the
potential cbeys Laplace’s equation, and all the machinery of Chapier 1 carries
over. It is convenient, however, to rewrite the boundary conditions in s way that
makes reference only to the free charge. Equation 4.26 says

Emﬁ:‘,ﬂw -‘helowE;m =0y. (4.40)
or {in terms of the potential),
3 Vibowe Wiciow
above on = €below n = ~0y, (4.41)

whereas the potential itself is, of course, continuous (Eq. 2.34):

Vabove = Vieiow- 4.42)

i
This does ot apply to the surface charge {a, ), becau ; . - ) )
at the boundary. b ¢ 1, is not independent of positiun (obviously
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Example 4.7. A sphere of homogeneous linear dielectric material is placed in

anhotherwise uniform electric field E, (Fig. 4.27). Find the electric field inside the
sphere.

E,

FIGURE 4.27

Solution
This is reminiscent of Ex. 3.8, in which an uncharged conducting sphere was
introduced into a uniform field. In that case, the field of the induced charge
canceled Ey within the sphere; in a dielectric, the cancellation (from the bound
charge) is incomplete.

Our problem is to solve Laplace’s equation, for Vi,(r,8) when r < R, and
Vou (r. 6) when r > R, subject to the boundary conditions

(i) Vin = Vour alr=R,
v, aV

(ii) € no= eo—wl, at r =R, (4.43)
ar ar

(iii} Vo = —Eprcosf, for r > R.

(The second of these follows from Eq. 4.41, since there is no free charge at the
surface.) Inside the sphere, Eq. 3.65 says

[o.4]
Vilr.8) = D Arr! Pi(cosé):; (4.44)
I=0
outside the sphere, in view of (iii), we have
og B’
Vou(r. 0) = —Eorcosé + 3 a7 Pi(cos8). (4.45)
=0
Boundary condition (i) requires that

~ [s 4]

B
" A/ R Pr(cos ) = —EqRcosf + 3 R,—:_IP;(cosG),
=0 =0
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SOI4

B
e

B, (4.46)
A] R = -EOR + 'R_z'.
Meanwhile, condition (ii) yields
- S (I + 1B
& Y AR Pilcos) = ~Egcosd— Y et hieos.
1=0 {=m0
50
¢+ D5
EJAJR’_1=- R dor 1 #£1,
447
2B,
eA=—Eo— F
It follows that
A =B =0 forl # 1.
| (4.48)
A=-gqb Bi=ERE
Evidently
3El:l 3£o
il 0) == 6=~ 2
Vin(r. 6) E’+2rcos ey
and hence the field inside the sphere is (surprisingly) uniform:
3
E= : 4.49)
€ + 250 (

Example 4.8. Suppose the entire region below the plane z = 0 in t1g. 4.28is
filled with uniform linear dielectric material of susceptibility x,. ¢ sl ulate the
force on a point charge g situated a distance d above the origin.

'4Remember, P (cos6) = cosf. and the coefficienis must be equal for each /. as you ¢ :id prove bY

multiplying by Py (cos8) sin 8, integrating from Oto _and i the T e
polynomials (Eq. 3.68). invoking the orthogonality <« t Legendre
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FIGURE 4.28

Solution

The surface bound charge on the xy plane is of opposite sign to g, so the force
will be attractive. (In view of Eq. 4.39, there is no volume bound charge.) Let us
first calculate oy, using Egs. 4.11 and 4.30.5

o, =P-fi = P. = €ox. .,

where E. is the z-component of the total field just inside the dielectric, at z = 0.
This field is due in part to g and in part to the bound charge itself. From Coulomb’s
law, the former contribution is

! i cosd = : 94
dreg (r2 + d?) T dmep (r2 4+ d¥)¥?’

where r = /x? + y? is the distance from the origin. The z component of the field
of the bound charge, meanwhile, is —o,/2¢; (see footnote after Eq. 2.33). Thus

1 qd Oy ]

b = CoXe [_ dmeg (rP+d?2 2¢

which we can solve for o):

L{_x qd
=— . 4.50
= "o (x,+2) (r* +d»H3? *-50)

Apart from the factor x./(X + 2), this is exactly the same as the induced charge
on an infinite conducting plane under similar circumstances (Eq. 3.10).'® Evi-
dently the total bound charge is

Xe
= - . 4.51)
o (Xr + ) 7
*This method mimics Prob. 3.38.

15For some purposes a conductor can be regarded as the limiting case of a linear dielectric, with
x. — 0. This is ofien a useful check—try applying it to Exs. 4.5, 4.6, and 4.7.
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We could, of course, obtain the field of o, by direct integration

1 5)
- — — jopda.
E= 4reg (42 >

But, as in the case of the conducting plane, there is a qiar soll‘llion by the method
of images. Indeed, if we replace the dielectric by a single point charge g, at the

image position (0,0, —d}, we have

1 q qb
= |_—=t T s | (4.52)
V_4N€o[ 2+ y? +(z—d) ,/x3+y-+(z+d)-]

in the region z > 0. Meanwhile, a charge (¢ + g») a1 (0, 0, d) yields t'ie potential

S L [___‘?:‘_4__] _ 5

CAne | ST+ ¥+ (2-d)

for the region z < 0. Taken together, Egs. 4.52 and 4.53 constitute o lunclion that
satisfies Poisson’s equation with a point charge g at (0. 0, d). which yc.v to zeroat
infinity, which is continuous at the boundary z = 0. and whose norn .. derivative
exhibits the discontinuity appropriate to a surface charge g, at = = ¢

“\e w0/ A\xeH2) (B Y

9z =0+ 3_7.
Accordingly, this is the correct potential for our problem. In particulur. the force
on g is:

1 qq . I ( X ) 7.
= =- I3 454
ameo QAR dmea \xe + 2 o 4.54)

I do not claim 1o have provided a compelling motivation for by« 3.52 and
4.53—like all image solutions, this one owes its justification to th fact that it
works: it solves Poisson’s equation, and it meets the boundary con. .tions, Still,
discovering an image solution is not entirely a matter of guesswork | nhcre are at
least two “rules of the game™: (1) You must never put an image ch-:ge into the
region where you're computing the potential. (Thus Eq. 4.52 gives tic potential
for z > 0, but this image charge g, is at 7 = —d; when we wum 1o the repion £ < 0
(Eq. 4.53), the image charge (g + g) isat z = +d.) (2) The image churges must
add up to the correct total in each region. (That's how I knew to use . 1o account
for the charge in the region z < 0, and (¢ + g3) to cover the region = - 0.}

NS

Problem 4.22 A very long cylinder of lincar dielectric material is placed in an
otherwise uniform electric field Eo. Find the resulting fiekd within the cyhinder. (The
radius is g, the susceptibility x,. and the axis is perpendicular to E, .}
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Pm!:lem 4.23 Find the field inside a sphere of linear dielectric material in an oth-
erwise uniform electric field E; (Ex. 4.7) by the following methed of successive
approximations: First pretend the field inside is just Eq, and use Eq. 4.30 to write
down the resulting polarization Py. This polarization generates a field of its own,
E, (Ex. 4.2), which in tum modifies the polarization by an amount P, which fur-
ther changes the field by an amount E;, and so on. The resuiting field is Eo + E,+
E: + -+ . Sum the series, and compare your answer with Eq. 4.49,

.Pmble-m 4.24 An uncharged conducting sphere of radius a is coated with a thick
insulating shell (dielectric constant ¢, ) out to radius b. This object is now placed in
an otherwise uniform electric field Eq. Find the electric field in the insulator.

H Problem 4.25 Suppose the region above the xy plane in Ex. 4.8 is also filled with
linear dielectric but of a different susceptibility x_. Find the potential everywhere.

4.4.3 W Energy in Dielectric Systems
It takes work to charge up a capacitor (Eg. 2.55):
W =icvi
If the capacitor is filled with linear dielectric, its capacitance exceeds the vacuum
value by a factor of the dielectric constant,
C =¢Cx,

as we found in Ex. 4.6. Evidently the work necessary to charge a dielectric-filled
capacitor is increased by the same factor. The reason is pretty clear: you have to
pump on more (free) charge, to achieve a given potential, because part of the field
is canceled off by the bound charges.

In Chapter 2, 1 derived a general formula for the energy stored in any electro-
static system (Eq. 2.45):

W = %" f Eldr, (4.55)
The case of the dielectric-filled capacitor suggests that this should be changed to
|
W=%ﬂfe,E2dr = EfD-Edr.

in the presence of linear dielectrics. To prove it, suppose the dielectric material
is fixed in position, and we bring in the free charge, a bit at a time. As py is
increased by an amount Apy, the polarization will change and with it the bound
charge distribution; but we're interested only in the work done on the incremental

free charge:

AW = f(Apf)V dr. (4.56)
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Since V - D = oy, Apy = V - (AD), where AD is the resulting change in D, s0

AW = [[V (aAD))V dr.

Now
V- -[(aD)V]= [V-(AD))V + AD - (VV),

and hence (integrating by parts):
AW = fV . [(AD)V]dr+j(AD)-Edt.

The divergence theorem turns the first term into a surface integral. wh: h vanishes
if we integrate over all space. Therefore, the work done is equal to

AW = j(AD) -Edr. 457

So far, this applies to any material. Now, if the medium is a lincae dielectric,
then D = €E, so

JAD-E) = }A(¢E") = ¢(AE)-E = (AD) - E

(for infinitesimal increments). Thus

AW:A(%[DEdT)

The total work done, then, as we build the free charge up from scr. - the final
configuration, is

W= %[D-Edr. (4.58)

as anticipated.!’

It may puzzle you that Eq. 4.55, which we derived quite gencia! - 1n Chap-
ter 2, does not seem to apply in the presence of dielectrics, where ©  replaced
by Eq. 4.58. The point is not that one or the other of these equatio: s wrong,
but rather that they address somewhat different questions. The distin. . n is sub-
tle, so let’s go right back to the beginning: What do we mean by " :hc energy
of a system™? Answer: It is the work required to assemble the ~. om. Very

”.[n case you are wondering why I did not do this more simply by the method of Scvi 4 3, starting
with W = 1 [ p,V dr. the reason is that this formula is untrue. in general. Siudy the icnivation of
Eqg. 2.42, and you will see that it applies only 10 the foral charge. For linear diele;'lm « 1t happens t0
hold for the free charge alone, but this is scarcely obvious a prioci and., in fact. is most o confirmed
by working backward from Eg, 4.58. ; '
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w?.ll—but when dielectrics are involved, there are two quite different ways one
might construe this process:

I. We bring in all the charges (free and bound), one by one, with tweezers, and
glue each one down in its proper final location. If this is whal you mean by
“assemble the system,” then Eq. 4.55 is your formula for the energy stored.
Notice, however, that this will not include the work involved in stretching
and twisting the dielectric molecules (if we picture the positive and nega-
tive charges as held together by tiny springs, it does not include the spring
energy, %kxz. associated with polarizing each molecule).'®

2. With the unpolarized dielectric in place, we bring in the free charges, one by
one, allowing the dielectric to respond as it sees fit. If rhis is what you mean
by *assemble the system” (and ordinarily it is, since free charge is what we
actually push around), then Eq. 4.58 is the formula you want. In this case
the “spring™ energy is included, albeit indirectly, because the force you must
apply to the free charge depends on the disposition of the bound charge; as
you move the free charge, you are automatically stretching those “springs.”

Example 4.9. A sphere of radius R is filled with material of dielectric constant ¢,
and uniform embedded free charge p,. What is the energy of this configuration?

Solution
From Gauss's law (in the form of Eq. 4.23), the displacement is

Ps

?r (r < R),
D{r) =
prr—i"' r>R
So the electric field is
Ps r (r<R),
E() 3epe,
r})= 3
ps R,
3—6031' {r > R).

The purely electrostatic energy (Eq. 4.55) is

€0 pr Y (% 24,2 pr\ g 1 2
==1|— 4aridr + —) R f —dnredr
Wi=2 [(3506,) ./o ’ (3€o g r

1
= —_ Rs +1].
9eo i (55,2 )

1"The “spring” itself may be electrical in nature, but it is still not included in Eq. 4.5, if E s uken to
be the macroscopic field.
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But the total energy (Eq. 4.58) is

RN (o R ™)
S () [ ramrtar+ (2E) (22 [T X
WZ_E[(3 )(3€0€r) A roanr 3 3ep g

Notice that W, < W,—that’s because W, does not include the energy i
stretching the molecules. ]

Let’s check that W5 is the work done on the free charge in assemt
system. We start with the (uncharged, unpolarized) dielectric sphere, ... |
the free charge in infinitesimal installments (dq). filling out the sph.:.
layer. When we have reached radius r’, the electric field is

Pr —r {r <r,
Jepe,
o P
= I' < R
E(r) 36‘,6’ pr (r<r ),
ﬂ—f' (r > R).
3€o

The work required to bring the next dg in from infinity to r' is

R r’
dW=—dq[ E-dl+f E-dl]
o R
3 f ] '3 I3
psr 1 oyr j’ 1
= —d —d —
q { 360 [w rt T+ 369(, R r! dr

err® T 11
=¥;[E+;(F‘E)]“‘f-

This increases the radius (r'y:

dg = pydnrtdr,

so the total work done, in goingfromr' = 0107’ = R, is

4J'rp2 1 i R ! R
w = _—f. _ l - !5 r _— d 4
K [R( ‘r)‘fﬂrdr-'-(r Ordr]
_2n RS 1
9€ pf (§:+I)=W2.v/
Evidently the energy “stored in the springs” is

2n
Wipring = _— 3
spring W2 W| = 455 gzpr (fr - ”_
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I would lik.e to confirm this in an explicit model. Picture the dielectric as a col-
lection of tiny proto-dipoles, each consisting of +q and —g¢ attached to a spring
of constant k and equilibrium length 0, so in the absence of any field the positive
and negative ends coincide. One end of each dipole is nailed in position (like the
nuclei in a solid), but the other end is free to move in response to any imposed
field. Let d be the volume assigned to each proto-dipole (the dipole itself may
occupy only a small portion of this space).

With the field tuned on, the electric force on the free end is balanced by the
spring force;'? the charges separate by a distance d: g E = kd. In our case

by

E = R
3ege,

The resulting dipole moment is p = gd, and the polanization is P = p/dr, so

oy
k= .
Seoe, 82 Prdr
The energy of this particular spring is
i
dWopring = =kd? = 2L py g1,
2 o€,
and hence the total is
Pr
Wioring = 2 / Prdz.
Now
r— 1
P=¢ox.E = ¢pxe 2 r= (€ 2 r,
3epe, 3¢,
S0
py (& = 1)py fR 4 M aps
Wipring = 4 dr = R (e, — 1),
pring = g == 4 A ridr 25oc? PR (e )

and it works oul perfectly.

It is sometimes alleged that Eq. 4.58 represents the energy even for nonlinear
dielectrics. but this is false: To proceed beyond Eq. 4.57, one must assume lin-
earity. In fact, for dissipative systems the whole notion of “stored energy” loses
its meaning, because the work done depends not only on the final configuration
but on how it got there. if the molecular “springs” are allowed tc have some

¥ Note that the “spring” here is a surrogate for whatever holds the molecule together—it includes the
electrical attraction of the other end. If it bothers you that the force is taken to be proportional 1o the
separation, look again ot Example 4.1.
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then Wiping can be made as Iargfr as you like, by assem.
way that the spring is obliged to expand and cop-
hing its final state. In particular, you get nonsensical
58 to electrets, with frozen-in polarization (see

friction, for instance,
bling the charges in such a
tract many times before reac
results if you try to apply Eq. 4.
Prob. 4.27).

Problem 4.26 A spherical conductor, of radius a4, camcs acharge @ (Fig. 4.29). 1y
is surrounded by linear dielectric material of susceptibility x.. out 1o rudhus b, Find

the energy of this configuration (Eq. 4.58).

FIGURE 4.29

Problem 4.27 Calculate W, using both Eq. 4.55 and Eq. 4.58, for a sphere of radius
R with frozen-in uniform polarization P (Ex. 4.2). Comment on the Jicrepancy.
Which (if either) is the “true” energy of the system?

4.4.4 ® Forces on Dielectrics

Just as a conductor is attracted into an electric field (Eq. 2.51). <o too is a
dielectric—and for essentially the same reason: the bound charge 1c::ds to accu-
mulate near the free charge of the opposite sign. But the calculation ot forces on
dielectrics can be surprisingly tricky. Consider, for example, the case ot a slab of
linear dielectric material, partially inserted between the plates of a p.iallel-plate
capacitor (Fig. 4.30). We have always pretended that the field is uniforin inside a
parallel-plate capacitor, and zero outside. If this were literally truc. there would
be no net force on the dielectric at all, since the field everywhere wou.d be per-
pendicular to the plates. However, there is in reality a fringing fiela vround the
edges, which for most purposes can be ignored but in this case is respmsible for
the whole effect. (Indeed, the field could not terminate abruptly at 1 edge of
the capacitor, for if it did, the line integral of E around the closed loop shown in
Fig. 4.31 would not be zero.) It is this nonupiform fringing field that pulls the
dielectric into the capacitor.

Fringing fields are notoriously difficult to calculate; luckily. we can avoid this
altogether, by the following ingenious method.® Let W be the encryy of the

For a direct calculation from the fringing fields. see E. R. Dietz. Am. J. Phvs. T2. 1499 (2004).
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|

Dielectric

FIGURE 4.30

)
P,

Fringing region

f['l dl=

FIGURE 4.31

system—it depends, of course, on the amount of overlap. If 1 pull the dielectric
out an infinitesimal distance d.x. the energy is changed by an amount equal to the
work done:

dW = F.dx, (4.59)
where F, is the force [ must exert, to counteract the electrical force £ on the
dielectric; Fine = — F. Thus the electrical force on the slab is

aw
=——. 4,
dx (4.60)
Now, the energy stored in the capacitor is
= {CV?, (4.61)
and the capacitance in this case is
= (el - xex). (4.62)

where / is the length of the plates (Fig. 4.30). Let’s assume that the total charge
on the plates (Q = CV) is held constant, as the dielectric moves. In terms of Q.

1 0
= —_— 4.
W=s= (4.63)
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SO
2
F=_£¥=%2§E’_§=%v=‘1§ (4.64)
But
dC _ _cox®
x d
and hence Xl o2
= "_MT_V : (4.65)

(The minus sign indicates that the force is in the negative x direction: the dielectric

is pulled into the capacitor.)
It is a common error to use Eq. 4.61 (with V constant), rather than Eq. 4.63

(with Q constant), in computing the force. One then obtains

. ,dC
- —EV dx’

which is off by a sign. Itis, of course, possible to maintain the capaciton .t a fixed
potential, by connecting it up to a battery. But in that case the battery «lso does
work as the dielectric moves; instead of Eq. 4.59, we now have

dW = Fredx +V dQ, (4.66)

where V d Q is the work done by the battery. It follows that

dw dag 1 ,dC _ 1,,,dC
dx+de_ 2V dx+v dx_ZV o (4.6T)
the same as before (Eq. 4.64), with the correct sign.

Please understand: The force on the dielectric cannot possibly Jdepend on
whether you plan to hold Q constant or V constant—it is determuned entirely
by the distribution of charge, free and bound. It's simpler o calcid/ui. the force
assuming constant Q, because then you don't have 10 worry about w s done by
the battery; but if you insist, it can be done correctly either way.

Notice that we were able to determine the force without know:. . anyihing
about the fringing fields that are ultimately responsible for it! Of cour~.. it’s built
into the whole structure of electrostatics that V x E = 0, and hence th .t the fring-
ing fields must be present; we're not really getting something for nothing here—
just cleverly exploiting the internal consistency of the theory. The cnergy stored
in the fringing fields themselves (which was not accounted for in thi~ derivation)
stays constant, as the slab moves; what does change is the cnergy well inside the
capacitor, where the field is nice and uniform.

Problem 4.2.8 Two long coaxial cylindrical metal tubes (inner radius . outer radius
b) stand vertically in a tank of dictectric oil (susceptibility x,. mass density o). The
inner one is maintained at potential V. and the outer one is grounded (Fig. 4.32). To
what height (1) does the oil rise, in the space between the ubes?
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FIGURE 432

More Problems on Chapter 4
Problem 4.29

(a) For the configuration in Prob. 4.5, calculate the force on p; due to p), and the
force on p, due to p;. Are the answers consistent with Newton’s third law?

(b) Find the total torque on p; with respect to the center of )., and compare it with
the torque on p; abour that same point. [Hint: combine your answer to (a) with
the result of Prob. 4.5.]

Problem 4.30 An electric dipole p, pointing in the y direction, is placed midway
between two large conducting plates, as shown in Fig. 4.33. Each plate makes a

Ay

+V

FIGURE 4.33
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t to the x axis, and they are maintained at potentials + v

ith res; "
small angle & ¥/ o ¢ net force on p? (There’s nothing to calculute, here, by

What is the direction of th
do explain your answer qualitatively.)

Problem 4.31 A point charge Q is “nailed down™ on a table. Ar:ound it. 4t radius R,
is a frictionless circular track on which a dipole p rides, .consua:ncd alw ays 10 point
the circle. Use Eq. 4.5 to show that the electric force on the dipole is

-2
" 4me R
Notice that this force is always in the “forward™ direction (you can eusily confirm

this by drawing a diagram showing the forces on the two ends of the dipote). Why
isn’t this a perpetual motion machine?’'

tangent to

F

Problem 4.32 Eamshaw’s theorem (Prob. 3.2) says that you cannot t1.y u charged
particle in an electrostatic field. Question: Could you trap a neutral tbut polarizable)

atom in an electrostatic field?
(a) Show that the force on the atom is F = Jar V(E?).

(b) The question becomes, therefore: Is it possible for E7 to have a lov.t maximum
(in a charge-frec region)? In that case the force would push the at:n back to its
equilibrium position. Show that the answer is no. [Hinr: Use Prob 3 1a), )2

Problem 4.33 A dielectric cube of side a, centered at the onigin. carr:c. o “frozen-
in” polarization P = kr, where k is a constant. Find all the bound char v+ and check
that they add up to zero.

Problem 4.34 The space between the plates of a parallel-plate cap... itor is filled
with dielectric material whose dielectric constant varies lincarly tiom [ at the
bottom plate (x =0) to 2 at the top plate (x = ). The capacitor .- vonnecled
1o a battery of voltage V. Find all the bound charge, and chech thiu the total
is zero,

Problem 4.35 A point charge g is imbedded at the center of a sph.vc of linear
dielectric material (with susceptibility x, and radius R). Find the clecinic tield, the
polarization, and the bound charge densities, p, and o,. What is the :otal bound
charge on the surface? Where is the compensating negative bound ch:: - located?

Problem 4.36 At the interface between one linear dielectric and anothe  the electric
ficld lines bend (see Fig. 4.34). Show that

tané:/tané = & /¢, {4.68)
assuming there is no free charge at the boundary. [Comment: Eq. 4.68 1 reminiscent

of Snell’s law in optics. Would a convex “lens™ of dielectric material te1... 1o “focus.”
or “defocus,” the electric field?)

2l This charming paradox was suggested by K. Brownstein.
2Interestingly, it can be done with oscillating fields. See K. T. McDonald. Am. J. Phvs, 68, 486
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FIGURE 4.34

Problem 437 A point dipole p is imbedded at the center of a sphere of linear
dlelo-acmc material (with radius R and dielectric constant ¢, ). Find the electric po-
tential inside and outside the sphere.

pcosd ( r¥ (e, — l)) prasf 3
Answer; 1+2—-—"—"1],. :
[ dmer? R, +2) r=k) 4 egr? (E, +2) iz R)]

Problem 4.38 Prove the following uniqueness theorem: A volume V contains a
specified free charge distribution, and various pieces of linear dielectric material,
with the susceptibility of each one given. If the potential is specified on the bound-
aries S of V (V = 0 at infinity would be suitable) then the potential throughowt V
is uniquely determined. [Hinr: Integrate V - (V3D3) over V.|

W

HET \ 154

baa T s
FIGURE 4.35

Problem 4.39 A conducting sphere at potential V; is half embedded in linear
dielectric material of susceptibility x., which occupies the region z < 0 (Fig. 4.35).
Claim: the potential everywhere is exactly the same as it would have been in the
absence of the dielectric! Check this claim, as follows:

(a) Write down the formula for the proposed potential V(r), in terms of V;, R,
and r. Use it to determine the field, the polarization, the bound charge, and the
free charge distribution on the sphere.

(b) Show that the resulting charge configuration would indeed produce the potential
Vir).

(¢) Appeal to the uniqueness theorem in Frob. 4.38 to complete the argument.

{d) Could you solve the configurations in Fig. 4.36 with the same potential? If not,
explain why.
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% a
(a) (b
FIGURE 4.36

Problem 4.40 According to Eq. 4.5, the force on a single dipole is (p - V)E, 50 the
net force on a dielectric object is

F= f(P - VE: dr. (4.69)

[Here Eey is the field of everything except the dielectric. You might :sume that it
wouldn’t matter if you used the 7ofal field; afier all, the dielectric can 1 < «ert a force
on itself. However, because the field of the dielectric is discontinuous at the location
of any bound surface charge, the derivative introduces a spurious delt *inction, and
it is safest 1o stick with Ee.] Use Eq. 4.69 to determine the force on . finy sphere,
of radius R, composed of linear dielectric material of susceptibility r.. which is
situated a distance s from a fine wire carrying a uniform line charge

Problem 441 In a linear dielectric, the polarization is propoftionai (v the field:
P = ¢, E. If the material consists of atoms (or nonpolar molecules: :he induced
dipole moment of each one is likewise proportional to the field p = vt Question:
What is the relation between the atomic polarizability or and the sus< cj:bility x,?

Since P (the dipole moment per unit volume) is p (the dipole moment per atom)
times N (the number of atoms per unit volume). P = Np = NaE, one’s tirst incli-
nation is to say that

Na
e = —. (4.70)

€
And in fact this is not far off, if the density is low. But closer inspe. ton reveals
a subtle problem, for the field E in Eq, 4,30 is the total macroscopi. held in the
medium, whereas the field in Eq. 4.1 is due to everything except the p.:- .cular atom
under consideration (polarizability was defined for an isolated aton ubject to 2
specified external field); call this field Eyy,. Imagine that the space sii tted to each
atom is a sphere of radius R, and show that

E= (I - %)Eﬂ.. 4.71)
Use this to conclude that
% Na/ey
| — Na/3¢
or

= 60 ("" . @™
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eq‘nation 4.72 is known as the Clausius-Mossotti formula, or, in its application to
optics, the Lorent2-Lorenz equation.

_Pmblem 4.42 Check the Clausius-Mossotti relation (Eq. 4.72) for the gases listed
in Table 4.1. (Dielectric constants are given in Table 4.2.) (The densities here are
so small that Egs. 4.70 and 4.72 are indistinguishable. For experimental data that
confirm the Clausius-Mossotti correction term see, for instance, the first edition of
Purcell’s Electricity and Magnetism, Problem 9.28.)%

Problem 4.43 The Clausius-Mossotti equation (Prob. 4.41) tells you how to cal-
cu!ale the susceptibility of a nonpolar substance, in terms of the atomic polariz-
ability a. The Langevin equation tells you how to calculate the susceptibility of a
{nolar substance, in terms of the permanent molecular dipole moment p. Here's how
It goes:

(a) The energy of a dipole in an extemal field E is w = —p -E = —pE cos®
(Eq. 4.6), where 6 is the usual polar angle, if we orient the z axis along E.
Statistical mechanics says that for a material in equilibrium at absoluse temper-
ature T, the probability of a given molecule having energy u is proportional to
the Boltzmann factor,

exp(—u/kT).
The average energy of the dipoles is therefore

[ "e—lu,’*ri an

<U> = Y——_——
fe—lufifldn

where dQ2 =sin6dfd¢p, and the integration is over all orientations (@ :
0 — n: ¢:0— 2m). Use this to show that the polarization of a substance
containing N molecules per unit volume is

P = Np[coth(pE/kT) — (kT/pE)]. 4.73)
That’s the Langevin formula. Sketch P/Np as a function of pE/kT.

(b) Notice that for large fields/low temperatures, virtvally all the molecules are
lined up, and the material is nonlinear. Ordinarily, however, ¥ T is much greater
than pE. Show that in this régime the material /s linear, and calculate its suscep-
tibility, in terms of N, p. T, and k. Compute the susceptibility of water at 20°C,
and compare the experimental value in Table 4.2. (The dipole moment of water
is 6.1 % 10~ C-m.) This is rather far off, because we have again neglected the
distinction between E and E,.. The agreement is better in low-density gases,
for which the difference between E and E,;., is negligible. Try it for water vapor
at 100°C and | atm.

ME. M. Purcell. Efectricity and Magnetism (Berkeley Physics Course, Vol. 2), (New York: McGraw-
Hilt. 19631,



